PLANT GROWTH DEVELOPMENT

Development = Growth + Differentiation

GROWTH

 Growth is an irreversible permanent increase in size of an organ/part/a cell at expense of energy. The metabolic process involved may be catabolic/anabolic.

Characteristics

Indeterminate - Unlimited growth in plants (1° & 2°) - Open growth - new cells added to plant body (due to meristem) - Increased amount of protoplasm/number/size/ surface area - Measured by-fresh weight, dry weight, length, area, volume, cell - PHASES OF GROWTH 1.Meristematic 2.Elongation

1.Meristematic	2.Elongation			
root/shoot apexrich in protoplasm	increased vacuolation enlarged cells			
large nucleus	cell wall with deposition			
• 1º cell	3.Maturation			
walls(cellulose)	max wall thickenings			
 plasmodesmata(+) 	 protoplasmic modifications 			

Growth Rates- Increasing growth per unit time

Geometrical growth (characteristic to plants)

- The cells mitotically dividing & the progeny cells all continue to divide.
- Sigmoid curve

 $W_1 = W_0 e^{rt}$

Height of Plant

Size/weight of origin

W, = final size (weight, height, number etc.)

Wo = initial size at the beginning of the period

r = growth rate

t = time of growth

e = base of natural logarithms

 $L_1 = L_0 + rt$

L, = length at time 't'

L₀ = length at time 'zero'

r = growth rate / elongation

Time

Arithmetic growth

- Mitotic divisions
- Only 1 daughter cell divides, other differentiate & mature
- e.g.-Root elongation(constant rate)

Conditions for normal growth

Turgidity of cells, water, oxygen, light, gravity, nutrients, optimum temperature

Qualitative analysis

Absolute growth rate
(Total growth per unit time)

Relative growth rate (growth per unit)

PROCESS OF MATURATION

1.Differentiation(Open Type)

- Cell loses ability to divide & perform specific functions
- Structural changes in cells such as formation of treachery elements and lose of protoplasm
- 2° cell wall forms(Lignocellulosic)

2.Dedifferentiation

- Mature cells regaining their capacity to divide, under specific conditions
- e.g.-Formation of interfascicular & cork cambium from differentiated parenchyma cells.

3.Redifferentiation

When dedifferentiated cells again lose ability to divide

DEVELOPMENT

 Sequence of events occurring in the life cycle of an organism from germination of seed till senescence

Plasticity

 Diff. pathways, that a plant adopts in order to sustain environment, different phases of life forming varied structures. e.g.heterophylly in cotton, coriander & larkspur

Development depends on

Intrinsic factors	Extrinsic factors		
Genetic (intracellular)	Light, Temperature		
Intercellular (chemicals)	Water, O ₂ , Nutrition		

PLANT GROWTH REGULATORS (Basis- Chemical Constitutents)							
Indole		Carotenoid		Terpenes	Gases		
Indole-3-acetic acid (IAA)	Kinetin	Abscisic acid (ABA)		Gibberellic acid (GA ₃)	C ₂ H ₄		
Basis-Function							
Growth Promoters		Growth Inhibitors					
AuxinGibberellinsCytokinins			Abscisic acid Ethylene(majorly an inhibitor)				
FOOD PLANTS							
Spring Variety Spring (planted) — Growing Season (flower) Winter Variety Autumn — Winter — Spring — Summer (plant) (germination) (resume growth) (harvesting) In Biennials (sugar beet, cabbage, carrot), cold treatment stimulates flowering.							

